289 research outputs found

    Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion

    Full text link
    Facial landmark detection, head pose estimation, and facial deformation analysis are typical facial behavior analysis tasks in computer vision. The existing methods usually perform each task independently and sequentially, ignoring their interactions. To tackle this problem, we propose a unified framework for simultaneous facial landmark detection, head pose estimation, and facial deformation analysis, and the proposed model is robust to facial occlusion. Following a cascade procedure augmented with model-based head pose estimation, we iteratively update the facial landmark locations, facial occlusion, head pose and facial de- formation until convergence. The experimental results on benchmark databases demonstrate the effectiveness of the proposed method for simultaneous facial landmark detection, head pose and facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition, 201

    Supervised descent method (SDM) applied to accurate pupil detection in off-the-shelf eye tracking systems

    Get PDF
    The precise detection of pupil/iris center is key to estimate gaze accurately. This fact becomes specially challenging in low cost frameworks in which the algorithms employed for high performance systems fail. In the last years an outstanding effort has been made in order to apply training-based methods to low resolution images. In this paper, Supervised Descent Method (SDM) is applied to GI4E database. The 2D landmarks employed for training are the corners of the eyes and the pupil centers. In order to validate the algorithm proposed, a cross validation procedure is performed. The strategy employed for the training allows us to affirm that our method can potentially outperform the state of the art algorithms applied to the same dataset in terms of 2D accuracy. The promising results encourage to carry on in the study of training-based methods for eye tracking.Spanish Ministry of Economy,Industry and Competitiveness, contracts TIN2014-52897-R and TIN2017-84388-

    Growth-profile configuration for specific deformations of tubular organs: A study of growth-induced thinning and dilation of the human cervix

    Get PDF
    Growth is a significant factor that results in deformations of tubular organs, and particular deformations associated with growth enable tubular organs to perform certain physiological functions. Configuring growth profiles that achieve particular deformation patterns is critical for analyzing potential pathological conditions and for developing corresponding clinical treatments for tubular organ dysfunctions. However, deformation-targeted growth is rarely studied. In this article, the human cervix during pregnancy is studied as an example to show how cervical thinning and dilation are generated by growth. An advanced hyperelasticity theory called morphoelasticity is employed to model the deformations, and a growth tensor is used to represent growth in three principle directions. The computational results demonstrate that both negative radial growth and positive circumferential growth facilitate thinning and dilation. Modeling such mixed growth represents an advancement beyond commonly used uniform growth inside tissues to study tubular deformations. The results reveal that complex growth may occur inside tissues to achieve certain tubular deformations. Integration of further biochemical and cellular activities that initiate and mediate such complex growth remains to be explored

    Synthesis, spectroscopic properties and theoretical calculations on methylene bridged 1,8-naphthyridine ligands and copper(I) complex through a non-catalyst C(sp3)–H methylenation

    Get PDF
    Two 1,8-naphthyridine derivatives containing methylene, N-(5-methyl-7-((3-oxo-1,3-dihydroisobenzofuran-1-yl)methyl)-1,8-naphthyridin-2-yl)acetamide (L1) and 2-amino-3-((7-amino-4-methyl-1,8-naphthyridin-2-yl)methyl)isoindolin-1-one (L2), as well as a copper(I) complex CuI(L1)2 (C1) have been synthesized through a non-catalyst C(sp3)–H methylenation process and characterized. The structure of C1 has been determined by X-ray diffraction analysis. The spectroscopic properties have been investigated by experimental as well as theoretical studies for all these compounds. The two ligands exhibit similar electronic absorption spectra with λmax at about 340 nm, which can be tentatively assigned to πnaph→πnaph* transition. The electronic absorption spectra of C1 exhibits at ~335 nm except in n-hexane, which may be assigned tentatively to the intraligand charge transfer transition. The assignment is further supported by density functional theory calculations and cyclic voltammetry

    Screening of prognostic biomarkers for endometrial carcinoma based on a ceRNA network

    Get PDF
    Objective This study aims to reveal the regulation network of lncRNAs-miRNAs-mRNA in endometrial carcinoma (EC), to investigate the underlying mechanisms of EC occurrence and progression, to screen prognostic biomarkers. Methods RNA-seq and miRNA-seq data of endometrial carcinoma were downloaded from the TCGA database. Edge.R package was used to screen differentially expressed genes. A database was searched to determine differentially expressed lncRNA-miRNA and miRNA-mRNA pairs, to construct the topological network of ceRNA, and to elucidate the key RNAs that are for a prognosis of survival. Results We screened out 2632 mRNAs, 1178 lncRNAs and 189 miRNAs that were differentially expressed. The constructed ceRNA network included 97 lncRNAs, 20 miRNAs and 73 mRNAs. Analyzing network genes for associations with prognosies revealed 169 prognosis-associated RNAs, including 92 lncRNAs, 16miRNAs and 61 mRNAs. Conclusion Our results reveal new potential mechanisms underlying the carcinogenesis and progression of endometrial carcinoma
    • …
    corecore